Remember to show all your calculations, including SI units.

Formulas

\[d_y = v_{iy} t + \frac{1}{2} at^2 \quad d_x = v_x t \]

Givens:

- **Vertical Motion**
 - \(a = -9.8 \text{ m/s}^2 \) (- because it is falling)
 - \(d_y = 15 \text{ m} \)
 - \(v_{iy} \) (initial vertical velocity) = 0 m/s
 - \(t = ? \)

- **Horizontal Motion**
 - \(d_x = 10 \text{ m} \)
 - \(v_x = 6 \text{ m/s} \)
 - \(t = ? \)

Remember, in physics + and − are used to indicate direction.

Up and right are usually considered + directions, so an object moving to the right us usually described as moving in the positive (+) x-direction.

Down and left are usually considered – directions, so a falling object is usually described as moving in the negative (-) y-direction.
\[d_y = v_{iy} \cdot t + \frac{1}{2} at^2 \]
\[d_y = 0 \cdot t + \frac{1}{2} at^2 \]
\[d_y = \frac{1}{2} at^2 \]
\[\frac{d_y}{a} = \frac{1}{2} t^2 \]
\[2(\frac{d_y}{a}) = t^2 \]
\[2(\frac{d_y}{a}) = t^2 \]

\[t = \sqrt{\frac{2d_y}{a}} \]

\[t = \sqrt{\frac{2(-15 \text{ m})}{-9.8 \text{ m/s}^2}} \]

\[t = 1.75 \text{ s} \]

(b) Determine whether the skater will travel far enough to complete the trick successfully.

\[d_x = v_x t \]
\[d_x = (6 \text{ m/s}) \cdot (1.75 \text{ s}) \]

\[d_x = 10.5 \text{ m} \]

Yes, the skater will clear the boxes by 0.5 meters.