

Introduction to the
Revised Mathematics TEKS

VERTICAL ALIGNMENT CHART
GRADES 5 -8, GEOMETRY

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.

No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:

Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9041;
email: copyrights@tea.texas.gov.
©2015 Texas Education Agency All Rights Reserved 2015
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
(A) apply mathematics to problems arising in everyday life, society, and the workplace;
(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution;
(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems;
(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate;
(E) create and use representations to organize, record, and communicate mathematical ideas;
(F) analyze mathematical relationships to connect and communicate mathematical ideas; and
(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Grade 5	Grade 6	Grade 7	Grade 8	Geometry
Comparing and Ordering Numbers				
(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:		(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
(B) compare and order two decimals to thousandths and represent comparisons using the symbols >, <, or =.	(D) order a set of rational numbers arising from mathematical and realworld contexts.		(D) order a set of real numbers arising from mathematical and real-world contexts.	
Representing and Relating Numbers Using Number Lines				
	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:		(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
	(B) identify a number, its opposite, and its absolute value.		(B) approximate the value of an irrational number, including π and square roots of numbers less than	
	(C) locate, compare, and order integers and rational numbers using a number line.		225 , and locate that rational number approximation on a number line.	
	Representing and Classifying Numbers			
	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
	(A) classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.	(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers.	(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of real numbers.	

forms. The student is expected to:
(E) extend representations for
division to include fraction notation
such as a / b represents the same
number as $a \div b$ where $b \neq 0$.
Determining Equivalence and
Comparing Part-to-Whole
Relationships
(5) Proportionality. The studen
applies mathematical process
standards to solve problems
involving proportional
relationships. The student is
expected to:
(C) use equivalent fractions,
decimals, and percents to show
equal parts of the same whole.

Adding and Subtracting Fractions and Rational Numbers

(3) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(H) represent and solve addition and subtraction of fractions with unequal denominators referring to the same whole using objects and pictorial models and properties of operations.
(K) add and subtract positive rational numbers fluently.
(3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.
(A) add, subtract, multiply, and divide rational numbers fluently.

Grade 5	Grade 6	Grade 7	Grade 8	Geometry
Adding and Subtract (3) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:	umbers, D	Rational Numbers (3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:		
(A) estimate to determine solutions to mathematical and real-world problems involving addition, subtraction, multiplication, or division.		(A) add, subtract, multiply, and divide rational numbers fluently. (B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.		

Multiplying Whole Numbers, Decimals, Fractions, and Rational Numbers

(3) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:	(3) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:	(3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
(L) divide whole numbers by unit fractions and unit fractions by whole numbers.	(A) recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values.	(A) add, subtract, multiply, and divide rational numbers fluently.
(C) solve with proficiency for quotients of up to a four-digit dividend by a two-digit divisor using strategies and the standard algorithm.	(E) multiply and divide positive rational numbers fluently.	
(G) solve for quotients of decimals to the hundredths, up to four-digit dividends and two- digit whole number divisors, using strategies and algorithms, including the standard algorithm.		
(F) represent quotients of decimals to the hundredths, up to four-digit dividends and two- digit whole number divisors, using objects and pictorial models, including area models.		(B) apply and extend previous understandings of operations to solve problems using addition,
(J) represent division of a unit fraction by a whole number and the division of a whole number by a unit fraction such as $1 / 3 \div 7$ and $7 \div$ $1 / 3$ using objects and pictorial models, including area models.		subtraction, multiplication, and division of rational numbers.

Applying Operations with Integers and Rational Numbers

(3) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:	(3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
(C) represent integer operations with concrete models and connect the actions with the models to standardized algorithms.	(A) add, subtract, multiply, and divide rational numbers fluently.
(D) add, subtract, multiply, and divide integers fluently.	
(E) multiply and divide positive rational numbers fluently.	

Grade 5 Connecting Counting and Divisibility	Grade 6	Grade 7 Grade 8		Geometry
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:				
(A) identify prime and composite numbers.				
Representing Problem Situations with the Equal Sign				
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(7) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:			
(B) represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.	(B) distinguish between expressions and equations verbally, numerically, and algebraically.			
	Representing Problem Situations with Equations and Inequalities			
	(9) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:	(10) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations and inequalities to represent situations. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:	
	(A) write one-variable, one-step equations and inequalities to represent constraints or conditions within problems.	(A) write one-variable, two-step equations and inequalities to represent constraints or conditions within problems.	(A) write one-variable equations or inequalities with variables on both sides that represent problems using rational number coefficients and constants.	
	(B) represent solutions for onevariable, one-step equations and inequalities on number lines.	(B) represent solutions for onevariable, two-step equations and inequalities on number lines.		

Representing with Equations and Inequalities

(9) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:	(10) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations and inequalities to represent situations. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:
(C) write corresponding real-world problems given one-variable, onestep equations or inequalities.	(C) write corresponding real-world problems given a one-variable, two step equation or inequality.	(B) write a corresponding realworld problem when given a onevariable equation or inequality with variables on both sides of the equal sign using rational number coefficients and constants.

Grade 5	Grade 6		Grade 8	Geometry
Representing and Solving Problems with Equations and Inequalities				
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(10) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:	(11) Expressions, equations, and relationships. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:	
(B) represent and solve multi- step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.	(A) model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.	(A) model and solve one-variable, two-step equations and inequalities.	(C) model and solve one-variable equations with variables on both sides of the equal sign that represent mathematical and realworld problems using rational number coefficients and constants.	
	(B) determine if the given value(s) make(s) one-variable, one-step	(B) determine if the given value(s) make(s) one-variable, two-step	(9) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneous linear equations. The student is expected to:	
	equations or inequalities true.	ue.	(A) identify and verify the values of x and y that simultaneously satisfy two linear equations in the form $y=$ $m x+b$ from the intersections of the graphed equations.	

Describing and Simplifying Numerical Expressions	
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(7) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(E) describe the meaning of parentheses and brackets in a numeric expression.	(A) generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization.
(F) simplify numerical expressions that do not involve exponents, including up to two levels of grouping.	(C) determine if two expressions are equivalent using concrete models, pictorial models, and algebraic representations.
	(D) generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.

Grade 5	Grade 6	Grade 7	Grade 8	Geometry
	Applying Multiple Representations for Foundations of Functions			
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:	(5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to:	
(C) generate a numerical pattern when given a rule in the form $y=a x$ or $y=x+a$ and graph.	(A) compare two rules verbally, numerically, graphically, and symbolically in the form of $y=a x$ or	(A) represent constant rates of change in mathematical and realworld problems given pictorial, tabular, verbal, numeric, graphical, and algebraic representations, including $d=r t$.	(A) represent linear proportional situations with tables, graphs, and equations in the form of $y=k x$.	
(D) recognize the difference between additive and multiplicative numerical patterns given in a table or graph.	between additive and multiplicative relationships.	(C) determine the constant of proportionality ($k=y / x$) within mathematical and real-world problems.	(E) solve problems involving direct variation.	
	(6) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to:	(7) Expressions, equations, and relationships. The student applies mathematical process standards to represent linear relationships using multiple representations. The student is expected to:		(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures. The student is expected to:
	(A) identify independent and dependent quantities from tables and graphs.	(A) represent linear relationships using verbal descriptions, tables, graphs, and equations that simplify to the form $y=m x+b$.	(B) represent linear nonproportional situations with tables, graphs, and equations in the form of $y=m x+b$, where $b \neq 0$.	(C) determine an equation of a line parallel or perpendicular to a given line that passes through a given point. Note: This SE builds on $A(2)(E)$ and $A(2)(F)$.

(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:
(B) calculate unit rates from rates in mathematical and real-world problems.
(4) Proportionality. The student applies mathematical process standards to explain proportional and non- proportional
relationships involving slope. The student is expected to:
(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and tw dimensional coordinate systems to verify geometric conjectures. The student is expected to:
(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines.
(A) use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y - values to the change in x-values, $\left(y_{2}-y_{1}\right) /$ $\left(x_{2}-x_{1}\right)$, is the same for any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the same line.
(B) graph proportional relationships, interpreting the unit rate as the slope of the line that models the relationship.
(C) use data from a table or graph to determine the rate of change or slope and y-intercept in mathematical and real-world problems.

Grade 5	Grade 6 Grade 7 Connecting Algebra and Geometry		Grade 8	Geometry
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to develop geometric relationships with volume. The student is expected to:	(6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to:	(11) Two-dimensional and threedimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:
(G) use concrete objects and pictorial models to develop the formulas for the volume of a rectangular prism, including the special form for a cube ($V=/ \times w \times$ $h, V=s \times s \times s$, and $V=B h$).	(B) model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes.	(A) model the relationship between the volume of a rectangular prism and a rectangular pyramid having both congruent bases and heights and connect that relationship to the formulas.	(A) describe the volume formula $V=B h$ of a cylinder in terms of its base area and its height.	
(H) represent and solve problems related to perimeter and/or area and related to volume.	(C) write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.	(B) explain verbally and symbolically the relationship between the volume of a triangular prism and a triangular pyramid having both congruent bases and heights and connect that relationship to the formulas.	(B) model the relationship between the volume of a cylinder and a cone having both congruent bases and heights and connect that	(D) apply the formulas for the volume of three-dimensional
(6) Geometry and measurement. The student applies mathematical process standards to understand, recognize, and quantify volume. The student is expected to:		(C) use models to determine the approximate formulas for the circumference and area of a circle and connect the models to the actual formulas.	relationship to the formulas.	figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure.
(A) recognize a cube with side length of one unit as a unit cube having one cubic unit of volume and the volume of a threedimensional figure as the number of unit cubes (n cubic units) needed to fill it with no gaps or overlaps if possible.				

Grade 5	Grade 6	Grade 7 o- and Three-Dimensional M	Grade 8	Geometry
			(10) Two-dimensional shapes. The student applies mathematical process standards to develop transformationalgeometry concepts. The student is expected to:	(10) Two-dimensional and threedimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and threedimensional figures. The student is expected to:
			(D) model the effect on linear and area measurements of dilated twodimensional shapes.	(B) determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change.
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:		(5) Proportionality. The student applies mathematical process standards to use geometry to describe or solve problems involving proportional relationships. The student is expected to:		(12) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles. The student is expected to:
(H) represent and solve problems related to perimeter and/or area		(B) describe π as the ratio of the circumference of a circle to its		(B) apply the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems.
and related to volume.				(D) describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle.

(7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:	(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two- dimensional coordinate systems to verify geometric conjectures. The student is expected to:
	(A) determine the coordinates of a point that is a given fractional distance less than one from one end of a line segment to the other in one- and two-dimensional coordinate systems, including finding the midpoint.
	(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines.
(D) determine the distance	
between two points on a	
coordinate plane using the	

Grade 5	Grade 6	Grade 7	Grade 8	Geometry
	Connecting Algebra and Geometry			
	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:	(11) Expressions, equations, and relationships. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:	(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:
	(A) extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a triangle.	(C) write and solve equations using geometry concepts, including the sum of the angles in a triangle, and angle relationships.	(D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools.
				(D) verify the Triangle Inequality theorem using constructions and apply the theorem to solve problems.

Grade 5	Grade 6	Grade 7		Geometry
	(10) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:	Connecting Alge (11) Expressions, equations, and relationships. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:	ra and Geometry (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:	(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:
				(A) verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems.
	(A) model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.	(C) write and solve equations using geometry concepts, including the sum of the angles in a triangle, and angle relationships.	(D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isoscelestriangles, midsegments, and medians, and apply these relationships to solve problems.
				(7) Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to:
				(B) apply the Angle-Angle criterion to verify similar triangles and apply the proportionality of the corresponding sides to solve problems.

describe or solve problems
involving proportional trigonometry. The student uses involving proportional relationships. The student is expected to:
(A) generalize the critical
attributes of similarity, including ratios within and between similar shapes.
(C) solve mathematical and realworld problems involving similar shape and scale drawings.
the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:
(A) prove theorems about similar triangles, including the Triangle Proportionality theorem, and apply these theorems to solve problems.
(6) Proportionality. The student applies mathematical process standards to use probability and statistics to describe or solve problems involving proportional relationships. The student is expected to:
(A) represent sample spaces for simple and compound events using
lists and tree diagrams.
(B) select and use different
simulations to represent simple and compound events with and without technology.
(C) make predictions and determine solutions using experimental data for simple and compound events.
(D) make predictions and determine solutions using theoretical probability for simple and compound events.
(E) find the probabilities of a simple event and its complement and describe the relationship between the two.
(F) use data from a random sample to make inferences about a population.
(G) solve problems using data represented in bar graphs, dot plots, and circle graphs, including part-to-whole and part-to-part comparisons and equivalents.
(H) solve problems using qualitative
and quantitative predictions and comparisons from simple
experiments.
(I) determine experimental and theoretical probabilities related to simple and compound events using data and sample spaces
(13) Probability. The student uses the process skills to understand probability in real-world situations and how to apply independence and dependence of events. The student is expected to:
(A) develop strategies to use permutations and combinations to solve contextual problems.
(C) identify whether two events are independent and compute the probability of the two events occurring together with or without replacement.
(D) apply conditional probability in contextual problems.
(E) apply independence in contextual problems
(B) determine probabilities based on area to solve contextual problems.

| Grade 5
 Graphing on the | Grade 6
 Coordinate Plane |
| :--- | :--- | :--- | :--- | :--- |

Grade 5 Graphing on the Coordinate Plane	Grade 6	Grade 8 Geometry Applying Transformational Geometry and the Coordinate Plane	
(8) Geometry and measurement. The student applies mathematical process standards to identify locations on a coordinate plane. The student is expected to:		(10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:	(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to:
(B) describe the process for graphing ordered pairs of numbers in the first quadrant of the coordinate plane.		(C) explain the effect of translations, reflections over the x or y-axis, and rotations limited to $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° as applied to two- dimensional shapes on a coordinate plane using an algebraic representation.	(A) describe and perform transformations of figures in a plane using coordinate notation.
(C) graph in the first quadrant of the coordinate plane ordered pairs of numbers arising from mathematical and real-world problems, including those generated by number patterns or found in an input-output table.			(B) determine the image or preimage of a given two-dimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane.
			(C) identify the sequence of transformations that will carry a given pre-image onto an image on and off the coordinate plane.

Describing Data Distribution and Drawing Inferences

	(12) Measurement and data. The	(12) Measurement and data. The	(11) Measurement and data. The

student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is student applies mathematical process standards to use statistical representations to analyze data. The student is expected to: expected to:
(B) use the graphical
representation of numeric data to describe the center, spread, and shape of the data distribution.

(C) summarize numeric data with

 numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution.(D) summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.
(A) compare two groups of numeric data using comparative dot plots or box plots by comparing their
shapes, centers, and spreads. shapes, centers, and spreads.
d
student applies mathematical process standards to use statistical procedures to describe data. The student is expected to:
(B) determine the mean absolute deviation and use this quantity as a measure of the average distance data are from the mean using a data set of no more than 10 data points.
(B) use data from a random sample to make inferences about a population.
(C) compare two populations based on data in random samples from these populations, including informal comparative inferences about differences between the two populations
(C) simulate generating random samples of the same size from a population with known characteristics to develop the notion of a random sample being representative of the population from which it was selected.

 process skills with deductive reasoning to understand geometric relationships. The student is expected to:
(A) distinguish between undefined terms, definitions, postulates, conjectures, and theorems. (B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse.
(C) verify that a conjecture is false using a counterexample.
(D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle.
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:
(B) construct congruent segments, congruent angles, a segment
bisector, an angle bisector,
perpendicular lines, the
perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge. angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships.
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:
(B) prove two triangles are
congruent by applying the Side-
Angle-Side, Angle-Side-Angle, Side-
Side-Side, Angle-Angle-Side, and
Hypotenuse-Leg congruence conditions.
(C) apply the definition of
congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles. (8) Similarity, proof, and
trigonometry. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:
(A) prove theorems about similar
triangles, including the Triangle
Proportionality theorem, and apply
these theorems to solve problems.
(B) identify and apply the
relationships that exist when an altitude is drawn to the hypotenuse of a right triangle, including the geometric mean, to solve problems. uses the process skills to recognize characteristics and dimensional changes of two- and threedimensional figures. The student is expected to:
(A) identify the shapes of two-
dimensional cross-sections of prisms, pyramids, cylinders, cones, and spheres and identify threedimensional objects generated by rotations of two-dimensional shapes.
(12) Circles. The student uses the process skills to understand geometric relationships and apply
theorems and equations about circles. The student is expected to: (A) apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems.
(E) show that the equation of a circle with center at the origin and
radius r is $x^{2}+y^{2}=r^{2}$ and
determine the equation for the graph of a circle with radius r and
center $(h, k),(x-h)^{2}+(y-k)^{2}=r^{2}$.

