Introduction to the Revised Mathematics TEKS

VERTICAL ALIGNMENT CHART KINDERGARTEN - GRADE 3

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission ofTEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.
No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9270 or 512-463-9437;
email: copyrights@tea.state.tx.us.
©2013 Texas Education Agency All Rights Reserved 2013
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
(A) apply mathematics to problems arising in everyday life, society, and the workplace.
(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
(E) create and use representations to organize, record, and communicate mathematical ideas.
(F) analyze mathematical relationships to connect and communicate mathematical ideas.
(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(A) count forward and backward to at least 20 with and without objects.
(B) read, write, and represent whole numbers from 0 to at least 20 with and without objects or pictures.
(C) count a set of objects up to at least 20 and demonstrate that the last number said tells the number of objects in the set regardless of their arrangement or order. (D) recognize instantly the quantity of a small group of objects in organized and random arrangements.
(E) generate a set using concrete and pictorial models that represents a number that is more than, less than, and equal to a given number up to 20 .
(F) generate a number that is one more than or one less than another number up to at least 20.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(A) recognize instantly the quantity of structured arrangements.

(D) generate a number that is greater than or less than a given whole number up to 120 .
 (C) generate a number that is greater than or less than a given whole number up to 1,200 .

(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(G) compare sets of objects up to at least 20 in each set using comparative language.
(H) use comparative language to describe two numbers up to 20 presented as written numerals.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(E) use place value to compare whole numbers up to 120 using comparative language.
(F) order whole numbers up to 120 using place value and open number lines.
(G) represent the comparison of two numbers to 100 using the symbols $>,<$, or $=$.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(F) order whole numbers up to 120 using place value and open number lines.
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(E) locate the position of a given whole number on an open number line.
(
(F) name the whole number that corresponds to a specific point on a number line.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:
(C) represent a number on a number line as being between two consecutive multiples of $10 ; 100 ; 1,000$; or 10,000 and use words to describe relative size of numbers in order to round whole numbers.
(3) Number and operations. The student applies mathematical process standards to represent and explain fractional units. The student is expected to:
(A) represent fractions greater than zero and less than or equal to one with denominators of $2,3,4,6$, and 8 using concrete objects and pictorial models, including strip diagrams and number lines.
(B) determine the corresponding fraction greater than zero and less than or equal to one with denominators of $2,3,4,6$, and 8 given a specified point on a number line.
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(I) compose and decompose numbers up to 10 with objects and pictures.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(B) use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones.
(C) use objects, pictures, and expanded and standard forms to represent numbers up to 120 .
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(A) use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones.
(B) use standard, word, and expanded forms to represent numbers up to 1,200 .
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:
(A) compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as appropriate.
(B) describe the mathematical relationships found in the base-10 place value system through the hundred thousands place.

Representing Fraction Concepts

(3) Number and operations. The student
applies mathematical process standards to recognize and represent fractional units and communicates how they are used to name parts of a whole. The student is expected to:
(A) partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words.
(D) identify examples and non-examples of halves, fourths, and eighths.
(3) Number and operations. The student applies mathematical process standards to represent and explain fractional units. The student is expected to:

(C) use concrete models to count

 fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole.(B) explain that the more fractional parts used to make a whole, the smaller the part. the fewer the fractional parts, the larger the part.
(A) represent fractions greater than zero and less than or equal to one with denominators of $2,3,4,6$, and 8 using concrete objects and pictorial models, including strip diagrams and number lines.
(E) solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with denominators of $2,3,4,6$, and 8 .
(C) explain that the unit fraction $1 / b$ represents the quantity formed by one part of a whole that has been partitioned into b equal parts where b is a non-zero whole number.
(D) compose and decompose a fraction a / b with a numerator greater than zero and less than or equal to b as a sum of parts $1 / b$.
(3) Number and operations. The student applies mathematical process standards to represent and explain fractional units.
The student is expected to:
(F) represent equivalent fractions with denominators of $2,3,4,6$, and 8 using a variety of objects and pictorial models, including number lines.
(G) explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model.
(H) compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models.
(3) Number and operations. The student applies mathematical process standards to develop an understanding of addition and subtraction situations in order to solve problems. The student is expected to:
(A) model the action of joining to represent addition and the action of separating to represent subtraction.
(B) solve word problems using objects and drawings to find sums up to 10 and differences within 10.

(C) explain the strategies

 used to solve problems involving adding and subtracting within 10 using spoken words, concrete and pictorial models, and number sentences.
Adding and Subtracting Whole Numbers, Decimals, and Rational Numbers

(3) Number and operations. The student applies mathematical process standards to develop and use strategies for whole number addition and subtraction computations in order to solve problems. The student is expected to:
(B) use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as $2+4=[] ; 3+[]=7$; and $5=[]-3$.
(C) compose 10 with two or more addends with and without concrete objects.
(E) explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences.
(A) use concrete and pictorial models to determine the sum of a multiple of 10 and a one-digit number in problems up to 99.
(D) apply basic fact strategies to add and subtract within 20 , including making 10 and decomposing a number leading to a 10.
(F) generate and solve problem situations when given a number sentence involving addition or subtraction of numbers within 20.
(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve addition and subtraction problems with efficiency and accuracy. The student is expected to:
(B) add up to four two-digit numbers and subtract two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations.
(C) solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms.
(A) recall basic facts to add and subtract within 20 with automaticity.
(D) generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000.
(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(A) solve with fluency one-step and twostep problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction.
to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to: (B) round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems.

Representing and Determining Values of Coins and Bills

(4) Number and operations. The student
applies mathematical process standards
to identify coins in order to recognize the
need for monetary transactions. The
student is expected to:

(4) Number and operations. The student applies mathematical process standards to identify coins, their values, and the relationships among them in order to recognize the need for monetary transactions. The student is expected to:	(5) Number and operations. The student applies mathematical process standards to determine the value of coins in order to solve monetary transactions. The student is expected to:	(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(A) identify U.S. coins, including pennies, nickels, dimes, and quarters, by value and describe the relationships among them.		
(B) write a number with the cent symbol to describe the value of a coin.	(B) use the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins.	
(C) use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes.	(A) determine the value of a collection of coins up to one dollar.	(C) determine the value of a collection of coins and bills.

Grade 3

Multiplying Whole Numbers, Decimals, Fractions, and Rational Numbers

6) Number and operations. The student applies mathematical process standards to connect repeated addition and subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to:
(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(A) model, create, and describe contextual multiplication situations in which equivalent sets of concrete objects are joined.
(D) determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10
(E) represent multiplication facts by using a variety of approaches such as repeated addition, equal-sized groups, arrays, area models, equal jumps on a number line, and skip counting.
(F) recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts.
(G) use strategies and algorithms, including the standard algorithm, to multiply a two-digit number by a one-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties.
(6) Number and operations. The student applies mathematical process standards to connect repeated addition and subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to:
(B) model, create, and describe contextual division situations in which a set of concrete objects is separated into equivalent sets.
(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(H) determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally.
(I) determine if a number is even or odd using divisibility rules.
(J) determine a quotient using the relationship between multiplication and division.
(K) solve one-step and two-step problems involving multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models, and equal groups; properties of operations; or recall of facts.

Connecting Counting and Reciting

| (5) Algebraic reasoning. The student | (5) Algebraic reasoning. The student |
| :--- | :--- | applies mathematical process standards to identify the pattern in the number word list. The student is expected to:

(A) recite numbers up to at least 100 by ones and tens beginning with any given number.
applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(A) recite numbers forward and backward from any given number between 1 and 120.

Connecting Counting and Divisibility

(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to: (B) skip count by twos, fives, and tens to determine the total number of objects up to 120 in a set.
(7) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to: (A) determine whether a number up to 40 is even or odd using pairings of objects to represent the number.

Connecting Counting and Place Value
\(\left.$$
\begin{array}{l|l|}\hline \text { (5) Algebraic reasoning. The student } \\
\text { applies mathematical process standards } \\
\text { to identify and apply number patterns } \\
\text { within properties of numbers and } \\
\text { operations in order to describe } \\
\text { relationships. The student is expected to: }\end{array}
$$ \quad \begin{array}{l}(7) Algebraic reasoning. The student

applies mathematical process standards

to identify and apply number patterns

within properties of numbers and

operations in order to describe

relationships. The student is expected to:\end{array}\right]\)	(C) use relationships to determine the
number that is 10 more and 10 less than a a	
given number up to 120.	
:---	
to determine the number that is 10 or	
100 more or less than a given number up	
to 1,200.	

(5) Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. The student is expected to:

Representing Problem Situations with the equal sign

(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(D) represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences
(E) understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s).
(7) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(5) Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. The student is expected to:
(C) represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem.
(A) represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models, number lines, and equations.
(B) represent and solve one- and twostep multiplication and division problems within 100 using arrays, strip diagrams, and equations.

Representing and Solving Problems with Equations and Inequalities

(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(F) determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation.
(G) apply properties of operations to add and subtract two or three numbers.
(5) Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. The student is expected to:
(A) represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models, number lines, and equations.
(D) determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product.
(B) represent and solve one- and twostep multiplication and division problems within 100 using arrays, strip diagrams, and equations.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to:
(A) identify two-dimensional shapes, including circles, triangles, rectangles, and squares as special rectangles.
(D) identify attributes of two- dimensional shapes using informal and formal geometric language interchangeably.
(B) identify three-dimensional solids, including cylinders, cones, spheres, and cubes, in the real world.
(C) identify two-dimensional components of three-dimensional objects.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties.
The student is expected to:
(C) create two-dimensional figures, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons.
(D) identify two-dimensional shapes, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons and describe their attributes using formal geometric language.
(E) identify three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes), and triangular prisms, and describe their attributes using formal geometric language.
(B) distinguish between attributes that define a two-dimensional or threedimensional figure and attributes that do not define the shape.
(8) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and three dimensional solids to develop generalizations about their properties The student is expected to:
(A) create two-dimensional shapes based on given attributes, including number of sides and vertices.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional geometric figures to develop generalizations about their properties. The student is expected to:
(B) use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to:
(E) classify and sort a variety of regular and irregular two- and three-dimensional figures regardless of orientation or size.

Classifying and Sorting Two-Dimensional and Three-Dimensional Figures

| (6) Geometry and measurement. The | (8) Geometry and measurement. The |
| :--- | :--- | student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to: (A) classify and sort regular and irregular two-dimensional shapes based on attributes using informal geometric language.

student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to:
(C) classify and sort polygons with 12 or fewer sides according to attributes, including identifying the number of sides and number of vertices.
(B) classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language.

Composing and Decomposing Two-Dimensional and Three-Dimensional Figures

(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to:
(F) create two-dimensional shapes using a variety of materials and drawings.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties The student is expected to: (F) compose two-dimensional shapes by joining two, three, or four figures to produce a target shape in more than one way if possible.
(8) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and threedimensional solids to develop generalizations about their properties. The student is expected to:
(D) compose two-dimensional shapes and three-dimensional solids with given properties or attributes.
(E) decompose two-dimensional shapes such as cutting out a square from a rectangle, dividing a shape in half, or partitioning a rectangle into identical triangles and identify the resulting geometric parts.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional geometric figures to develop generalizations about their properties. The student is expected to:
(A) classify and sort two- and threedimensional figures, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language.
(7) Geometry and measurement. The student applies mathematical process standards to directly compare measurable attributes. The student is expected to:
(A) give an example of a measurable attribute of a given object, including length, capacity, and weight.
(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. The student is expected to:
(D) determine when it is appropriate to
use measurements of liquid volume (capacity) or weight.
(E) determine liquid volume (capacity) or weight using appropriate units and tools.
(B) compare two objects with a common measurable attribute to see which object has more of/less of the attribute and describe the difference.

Measuring Length of Two-Dimensional and Three-Dimensional Objects

(7) Geometry and measurement. The

 student applies mathematical process standards to directly compare measurable attributes. The student is expected to:(A) give an example of a measurable attribute of a given object, including length, capacity, and weight.
(7) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to:
(A) use measuring tools to measure the length of objects to reinforce the continuous nature of linear measurement.
(B) illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other.
(D) describe a length to the nearest whole unit using a number and a unit.
(C) measure the same object/distance with units of two different lengths and describe how and why the measurements differ.
(9) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to:
(D) determine the length of an object to the nearest marked unit using rulers, yardsticks, meter sticks, or measuring tapes.
(A) find the length of objects using concrete models for standard units of length.
(B) describe the inverse relationship between the size of the unit and the number of units needed to equal the length of an object.
(E) determine a solution to a problem involving length, including estimating lengths.
(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. The student is expected to:
(B) determine the perimeter of a polygon or a missing length when given perimeter and remaining side lengths in problems.

(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and three- dimensional solids to develop generalizations about their properties. The student is expected to:

Measuring Area and Volume

(9) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to:
(F) use concrete models of square units to find the area of a rectangle by covering it with no gaps or overlaps, counting to find the total number of square units, and describing the measurement using a number and the unit.
(G) partition two-dimensional figures into two and four fair shares or equal parts and describe the parts using words.
(H) identify examples and non-examples of halves and fourths.
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional geometric figures to develop generalizations about their properties. The student is expected to:
(C) determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row.
(D) decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive property of area.
(E) decompose two congruent twodimensional figures into parts with equal areas and express the area of each part as a unit fraction of the whole and recognize that equal shares of identical wholes need not have the same shape.
(8) Data analysis. The student applies mathematical process standards to collect and organize data to make it useful for interpreting information. The student is expected to:
(A) collect, sort, and organize data into two or three categories.
(8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to: (A) collect, sort, and organize data in up to three categories using models / representations such as tally marks or T-charts.
(B) use data to create real-object and picture graphs.
(B) use data to create picture and bartype graphs. (8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:
(C) draw conclusions and generate and answer questions using information from picture and bar-type graphs.
10) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:
(8) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:
(A) explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for a given category.
(B) organize a collection of data with up to four categories using pictographs and bar graphs with intervals of one or more.
(A) summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or bar graph with scaled intervals.
(8) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to: problems involving addition or subtraction using data represented within pictographs and bar graphs with intervals of one.
(D) draw conclusions and make predictions from information in a graph.
(C) write and solve one-step word
(10) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:
(B) solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals.
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(A) identify ways to earn income.
(D) distinguish between wants and needs and identify income as a source to meet one's wants and needs.
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(A) define money earned as income
(B) identify income as a means of obtaining goods and services, oftentimes making choices between wants and needs.
(F) differentiate between producers and consumers and calculate the cost to produce a simple item.
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(A) explain the connection between human capital/labor and income.
(B) differentiate between money received as income and money received as gifts. (C) list simple skills required for jobs.

Considering Saving and Investing
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(C) distinguish between spending and saving.
11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to: (A) calculate how money saved can accumulate into a larger amount over time.
(B) explain that saving is an alternative to spending.
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(E) list reasons to save and explain the benefit of a savings plan, including for college.
(C) identify the costs and benefits of planned and unplanned spending decisions.

Kindergarten	Grade 1	Grade 2	Grade 3
		Considering Credit and Debt	
		(D) identify examples of borrowing and distinguish between responsible and irresponsible borrowing.	(D) explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the lender, usually with interest.
		(E) identify examples of lending and use concepts of benefits and costs to evaluate lending decisions.	
	Considering Planning and Money Management		
	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
	(D) consider charitable giving.		(F) identify decisions involving income, spending, saving, credit, and charitable giving.
		(C) distinguish between a deposit and a withdrawal.	

