Introduction to the Revised Mathematics TEKS

VERTICAL ALIGNMENT CHART KINDERGARTEN - GRADE 6

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission ofTEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.
No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9270 or 512-463-9437;
email: copyrights@tea.state.tx.us.
©2013 Texas Education Agency All Rights Reserved 2013
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
(A) apply mathematics to problems arising in everyday life, society, and the workplace.
(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
(E) create and use representations to organize, record, and communicate mathematical ideas.
(F) analyze mathematical relationships to connect and communicate mathematical ideas.
(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Counting and Recognizing Whole Numbers					
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:			
(A) count forward and backward to at least 20 with and without objects.					
(B) read, write, and represent whole numbers from 0 to at least 20 with and without objects or pictures.					
(C) count a set of objects up to at least 20 and demonstrate that the last number said tells the number of objects in the set regardless of their arrangement or order.					
(D) recognize instantly the quantity of a small group of objects in organized and random arrangements.	(A) recognize instantly the quantity of structured arrangements.				
(E) generate a set using concrete and pictorial models that represents a number that is more than, less than, and equal to a given number up to 20.					
(F) generate a number that is one more than or one less than another number up to at least 20.	(D) generate a number that is greater than or less than a given whole number up to 120.	(C) generate a number that is greater than or less than a given whole number up to 1,200.			

Kindergarten	Grade 1	Grade 2		Grade 4	Grade 5	Grade 6
Comparing and Ordering Numbers						
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:
(G) compare sets of objects up to at least 20 in each set using comparative language.	(E) use place value to compare whole numbers up to 120 using comparative language.	(D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or $=$).	(D) compare and order whole numbers up to 100,000 and represent comparisons using the symbols >, <, or =.	(C) compare and order whole numbers to 1,000,000,000 and represent comparisons using the symbols $>,<$, or $=$.	(B) compare and order two decimals to thousandths and represent comparisons using the symbols $>,<$, or $=$.	(D) order a set of rational numbers arising from mathematical and realworld contexts.
(H) use comparative language to describe two numbers up to 20 presented as written numerals.						
	(F) order whole numbers up to 120 using place value and open number lines.					
	(G) represent the comparison of two numbers to 100 using the symbols >, <, or $=$.					
				(F) compare and order decimals using concrete and visual models to the hundredths.		

Kindergarten	Grade 1	Grade 2 Composing	Grade 3 d Decomposing Num	Grade 4 : Place Value	Grade 5	Grade 6
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:	
(I) compose and decompose numbers up to 10 with objects and pictures.	(B) use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones.	(A) use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones.	(A) compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as appropriate.			
	(C) use objects, pictures, and expanded and standard forms to represent numbers up to 120 .	(B) use standard, word, and expanded forms to represent numbers up to 1,200.		(B) represent the value of the digit in whole numbers through $1,000,000,000$ and decimals to the hundredths using expanded notation and numerals.	(A) represent the value of the digit in decimals through the thousandths using expanded notation and numerals.	
			(B) describe the mathematical relationships found in the base-10 place value system through the hundred thousands place.	(A) interpret the value of each place-value position as 10 times the position to the right and as one-tenth of the value of the place to its left.		
(E) represent decimals, including tenths and hundredths, using concrete and visual models and money.						

	Determining Equivalence and Comparing Part-to-Whole Relationships			
	(3) Number and operations. The student applies mathematical process standards to represent and explain fractional units. The student is expected to:	(3) Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to:		(5) Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships. The student is expected to:
	(F) represent equivalent fractions with denominators of $2,3,4,6$, and 8 using a variety of objects and pictorial models, including number lines.			
	(G) explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model.	(C) determine if two given fractions are equivalent using a variety of methods.		
	(H) compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models.	(D) compare two fractions with different numerators and different denominators and represent the comparison using the symbols >, $=$, or <.		(C) use equivalent fractions, decimals, and percents to show equal parts of the same whole.
		(2) Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to:		
		(G) relate decimals to fractions that name tenths and hundredths.		

The student applies
mathematical proces
standards to develop and use strategies and methods for positive rational numbe omputations in order to solve problems with efficiency and accuracy. The student is expected to:
(E) represent and solve
ddition and subtraction of fractions with equal
denominators using objects and pictorial models that build to the number line and properties of operations. (F) evaluate the
easonableness of sums and differences of fractions using enchmark fractions $0,1 / 4$, $1 / 2,3 / 4$, and 1 , referring to the same whole.
(H) represent and solve addition and subtraction of fractions with unequal denominators referring to the same whole using objects and pictorial models and properties of operations.
(K) add and subtract positive rational numbers fluently.

(6) Number and operations. The student applies mathematical process standards to connect repeated addition and subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to:
(A) model, create, and describe contextual multiplication situations in which equivalent sets of concrete objects are joined.

(4) Number and operations.

 The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:(D)
(D) determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10 .
(E) represent multiplication facts by using a variety of approaches such as repeated addition, equal sized groups, arrays, area models, equal jumps on a number line, and skip counting.
(F) recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts.

(G) use strategies and

 algorithms, including the standard algorithm, to multiply a two-digit number by a one-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties.(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to:
(3) Number and operations. (3) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:

The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:
(E) multiply and divide positive rational numbers fluently.

(6) Number and operations. The student applies mathematical process standards to connect repeated addition and subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to

Dividing Whole Numbers, Decimals, Fractions, and Rational Numbers

(4) Number and operations.

 The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to: The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to:The student applies pplies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(F) represent quotients of decimals to the hundredths, up to four-digit dividends and two-digit whole number divisors, using objects and pictorial models, including area models.
(G) solve for quotients of decimals to the hundredths, up to four-digit dividends and two-digit whole number divisors, using strategies and algorithms, including the standard algorithm (J) represent division of a unit fraction by a whole number and the division of a whole number by a unit fraction such as $1 / 3 \div 7$ and $7 \div 1 / 3$ using objects and pictorial models, including area models.
(L) divide whole numbers by unit fractions and unit fractions by whole numbers
(3) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:
(E) multiply and divide positive rational numbers fluently. operations with concrete models and connect the actions with the models to standardized algorithms. (D) add, subtract, multiply, and divide integers flue
(E) multiply and divide (E) multiply and divide
positive rational number fluently.

Connecting Counting and Reciting	
(5) Algebraic reasoning. The student applies mathematical process standards to identify the pattern in the number word list. The student is expected to:	(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(A) recite numbers up to at least 100 by ones and tens beginning with any given number.	(A) recite numbers forward and backward from any given number between 1 and 120.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
	Representing Problem Situations with an Equals Sign					
	(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	(7) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	(5) Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. The student is expected to:	(5) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(7) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
	(D) represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences.	(C) represent and solve addition and subtraction word problems where	(A) represent one- and twostep problems involving addition and subtraction of whole numbers to 1,000	(A) represent multi-step	(B) represent and solve	
	(E) understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s).	unknowns may be any one of the terms in the problem.	using pictorial models, number lines, and equations.	problems involving the four operations with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity.	multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.	(B) distinguish between expressions and equations verbally, numerically, and algebraically.
			(B) represent and solve one- and two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations.			

(C) write corresponding real-world problems given one-variable, one-step equations or inequalities.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
	Representing and Solving Problems with Equations and Inequalities					
	(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	(7) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	(5) Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. The student is expected to:	(5) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:	(10) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:
	(F) determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation.	(C) represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem.	(A) represent one- and twostep problems involving addition and subtraction of whole numbers to 1,000 using pictorial models, number lines, and equations.	(A) represent multi-step problems involving the four operations with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity.	(B) represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.	(A) model and solve onevariable, one-step equations and inequalities that represent problems, including geometric concepts.
	(G) apply properties of operations to add and subtract two or three numbers.		(D) determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product.			(B) determine if the given value(s) make(s) onevariable, one-step equations or inequalities true.
			(B) represent and solve one- and two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations.			

student applies student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(E) describe the meaning of parentheses and brackets in a numeric expression.
(F) simplify numerical expressions that do not involve exponents, including up to two levels of
grouping.
(7) Expressions, equation
and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(A) generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization. using concrete models, pictorial models, and algebraic representations. (D) generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.

| (5) Algebraic reasoning. The |
| :--- | :--- | :--- | :--- |
| student applies |
| mathematical process |
| standards to analyze and |
| create patterns and |
| relationships. The student is |
| expected to: |\quad| (5) Algebraic reasoning. The |
| :--- |
| student applies |
| mathematical process |
| standards to develop |
| concepts of expressions and |
| equations. The student is |
| expected to: |\quad| (4) Algebraic reasoning. The |
| :--- |
| student applies |
| mathematical process |
| standards to develop |
| concepts of expressions and |
| equations. The student is |
| expected to: |\quad| (4) Proportionality. The |
| :--- |
| student applies |
| mathematical process |
| standards to develop an |
| understanding of |
| proportional relationships in |
| problem situations. The |
| student is expected to: |

(6) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to: (A) identify independent and dependent quantities from tables and graphs. (B) write an equation that represents the relationship between independent and dependent quantities from a table.
 using scale factors, tables, graphs, and proportion (B) solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models.
(C) use equivalent fractions, decimals, and percents to show equal parts of the same whole.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Defining Attributes of One-Dimensional, Two-Dimensional, and Three-Dimensional Figures					
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	(8) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional geometric figures to develop generalizations about their properties. The student is expected to:	(6) Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties. The student is expected to:	
(A) identify two-dimensional shapes, including circles, triangles, rectangles, and squares as special rectangles.	(C) create two-dimensional figures, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons.	(A) create two-dimensional shapes based on given attributes, including numbe r of sides and vertices.	(B) use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.	(A) identify points, lines, line segments, rays, angles, and perpendicular and parallel lines.	
(D) identify attributes of two-dimensional shapes using informal and formal geometric language interchangeably.	(D) identify two-dimensional shapes, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons and describe their attributes using formal geometric language.			(B) identify and draw one or more lines of symmetry, if they exist, for a twodimensional figure.	
				(C) apply knowledge of right angles to identify acute, right, and obtuse triangles.	
(B) identify three-dimensional solids, including cylinders, cones, spheres, and cubes, in the real world.	(E) identify three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes), and triangular prisms, and describe their attributes using formal geometric language.				
(C) identify two-dimensional components of threedimensional objects.	(B) distinguish between attributes that define a two-dimensional or three-dimensional figure and attributes that do not define the shape.				

(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:
(E) classify and sort a variety of regular and irregular two- and threedimensional figures regardless of orientation or size.

Classifying and Sorting Two-Dimensional and Three-Dimensional Figures
(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:
(A) classify and sort regular and irregular twodimensional shapes based on attributes using informal geometric language.
(8) Geometry and
measurement. The student applies mathematical process standards to analyze attributes of twodimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:
(C) classify and sort polygons with 12 or fewer sides according to attributes, including identifying the number of sides and number of vertices.
(B) classify and sort threedimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal

6) Geometry and

measurement. The student applies mathematical process standards to analyze attributes of twodimensional geometric figures to develop generalizations about their properties. The student is expected to:
(6) Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties. The student is expected to:

(A) classify and sort

 two- and three-dimensional figures, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language.(D) classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.
(5) Geometry and measurement. The student applies mathematical process standards to classify two-dimensional figures by attributes and properties. The student is expected to:
(A) classify two-dimensional figures in a hierarchy of sets and subsets using graphic organizers based on their attributes and properties.

Composing and Decomposing

Two-Dimensional and Three-Dimensional Figures

(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two- dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	(6) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two- dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	(8) Geometry and measurement. The student applies mathematical process standards to analyze attributes of two- dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:
(F) create two- dimensional shapes using a variety of materials and drawings.	(F) compose two- dimensional shapes by joining two, three, or four figures to produce a target shape in more than one way if possible.	(D) compose two- dimensional shapes and three-dimensional solids with given properties or attributes.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
	Measuring Attributes of Two-Dimensional and Three-Dimensional Objects					
(7) Geometry and measurement. The student applies mathematical process standards to directly compare measurable attributes. The student is expected to:	(7) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to:	(9) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to:	(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. The student is expected to:	(8) Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to:		
(A) give an example of a measurable attribute of a given object, including length, capacity, and weight.			(D) determine when it is appropriate to use measurements of liquid volume (capacity) or weight.	(C) solve problems that deal with measurements of length, intervals of time, liquid volumes, mass, and money using addition, subtraction, multiplication, or division as appropriate.		
			(E) determine liquid volume (capacity) or weight using appropriate units and tools.			
(B) compare two objects with a common measurable attribute to see which object has more of/less of the attribute and describe the difference.						

(8) Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to:	(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving measurement. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:
(A) identify relative sizes of measurement units within the customary and metric systems.		
(B) convert measurements within the same measurement system, customary or metric, from a smaller unit into a larger unit or a larger unit into a smaller unit when given other equivalent measures represented in a table.	(A) solve problems by calculating conversions within a measurement system, customary or metric.	(H) convert units within a measurement system, including the use of proportions and unit rates.
(C) solve problems that deal with measurements of length, intervals of time, liquid volumes, mass, and money using addition, subtraction, multiplication,		

(7) Geometry and
measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to:
(E) tell time to the hour and half hour using analog and digital clocks.

Measuring Time

(9) Geometry and
measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m.
(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. The student is expected to: (C) determine the solutions to problems involving addition and subtraction of time intervals in minutes using pictorial models or tools such as a 15 -minute event plus a 30 -minute event equals 45 minute
(8) Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to ength, intervals of time, lquid volumes, mass, and money using addition, subtraction, multiplication, or division as appropriate.

(B) illustrate degrees as the units used to measure an angle, where $1 / 360$ of any circle is one degree and an angle that "cuts" n/360 out of any circle whose center is t the angle's vertex has a measure of n degrees. Angle measures are limited to whole numbers (C) determine the approximate measures of ngles in degrees to the nearest whole number using a protractor (D) draw an angle with a given measure

Kindergarten	Grade 1	Grade 2	Grade 3 Representing Data	Grade 4	Grade 5	Grade 6
(8) Data analysis. The student applies mathematical process standards to collect and organize data to make it useful for interpreting information. The student is expected to:	(8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:	(10) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:	(8) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	(9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	(12) Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to:
(A) collect, sort, and organize data into two or three categories.	(A) collect, sort, and organize data in up to three categories using models/ representations such as tally marks or T-charts.					
		(A) explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for a given category.				
(B) use data to create realobject and picture graphs.	(B) use data to create picture and bar-type graphs.	(B) organize a collection of data with up to four categories using pictographs and bar graphs with intervals of one or more.	(A) summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or bar graph with scaled intervals.	(A) represent data on a frequency table, dot plot, or stem-and-leaf plot marked with whole numbers and fractions.	(A) represent categorical data with bar graphs or frequency tables and numerical data, including data sets of measurements in fractions or decimals, with dot plots or stem-andleaf plots.	(A) represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and box plots.
(B) represent discrete paired data on a scatterplot.						

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
Drawing Conclusions and Solving Problems Using Representations of Data						
(8) Data analysis. The student applies mathematical process standards to collect and organize data to make it useful for interpreting information. The student is expected to:	(8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:	(10) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:	(8) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	(9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	(9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	(13) Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to solve problems. The student is expected to:
(C) draw conclusions from real-object and picture graphs.	(C) draw conclusions and generate and answer questions using information from picture and bar-type graphs.	(D) draw conclusions and make predictions from information in a graph.				(A) interpret numeric data
		(C) write and solve onestep word problems involving addition or subtraction using data represented within pictographs and bar graphs with intervals of one.	(B) solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals.	(B) solve one- and two-step problems using data in whole number, decimal, and fraction form in a frequency table, dot plot, or stem-and-leaf plot.	(C) solve one- and two-step problems using data from a frequency table, dot plot, bar graph, stem-and-leaf plot, or scatterplot.	summarized in dot plots, stem-and-leaf plots, histograms, and box plots.
						(B) distinguish between situations that yield data with and without variability.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	
						(12) Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to:
						(B) use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution.
						(C) summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution.
						(D) summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
Considering Income and Careers						
(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:
(A) identify ways to earn income.	(A) define money earned as income.		(A) explain the connection between human capital/ labor and income.	(A) distinguish between fixed and variable expenses.	(A) define income tax, payroll tax, sales tax, and property tax.	
(D) distinguish between wants and needs and identify income as a source to meet one's wants and needs.	(B) identify income as a means of obtaining goods and services, oftentimes making choices between wants and needs.				(B) explain the difference between gross income and net income.	(H) compare the annual salary of several occupations requiring various levels of postsecondary education or vocational training and calculate the effects of the different annual salaries on lifetime income.
		(F) differentiate between producers and consumers and calculate the cost to produce a simple item.	(B) describe the relationship between the availability or scarcity of resources and how that impacts cost.	(B) calculate profit in a given situation.		
(B) differentiate between money received as income and money received as gifts.						
(C) list simple skills required for jobs.						

Kindergarten	Grade 1	Grade 2	Grade 3 Grade 4		Grade 5	Grade 6
	Considering Saving and Investing					
	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:
	(C) distinguish between spending and saving.	(A) calculate how money saved can accumulate into a larger amount over time.	(E) list reasons to save and explain the benefit of a savings plan, including for college.	(C) compare the advantages and disadvantages of various savings options.		
		(B) explain that saving is an alternative to spending.	(C) identify the costs and benefits of planned and unplanned spending decisions.			

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6
		Considering Credit and Debt				
		(11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:
		(D) identify examples of borrowing and distinguish between responsible and irresponsible borrowing.	(D) explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the lender, usually with interest.	(E) describe the basic purpose of financial institutions, including keeping money safe, borrowing money, and lending.	(C) identify the advantages and disadvantages of different methods of payment, including check, credit card, debit card, and electronic payments.	(B) distinguish between debit cards and credit cards.
			(D) explain why it is important to establish a positive credit history. (E) describe the information in a credit report and how long it is retained.			
						(G) explain various methods to pay for college, including through savings, grants, scholarships, student loans, and work-study.
		(E) identify examples of lending and use concepts of benefits and costs to evaluate lending decisions				(F) describe the value of credit reports to borrowers and to lenders.

