

Introduction to the Revised Mathematics TEKS

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.

No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9270 or 512-463-9437;
email: copyrights@tea.state.tx.us.

©2013 Texas Education Agency All Rights Reserved 2013

(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
(A) apply mathematics to problems arising in everyday life, society, and the workplace.
 he solution.
(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
(E) create and use representations to organize, record, and communicate mathematical ideas.
(F) analyze mathematical relationships to connect and communicate mathematical ideas.
(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
Comparing and Ordering Numbers									
(2) Number and operations The student applies mathematical process standards to understand compare whole numbers the relative position and magnitude of whole numbers, and relationships within the numeration expected tudent is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and the relative position and magnitude of whole numbers, and relationships within the numeration system related to place expected to: \qquad	(2) Number and operations. The student applies standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to expected to:	(2) Number and operations The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to: student is expected to:	(2) Number and operations The student applies mathematical process standards to represent, numbers and decimals and understand relationships student is expected to:	(2) Number and operations The student applies mathematical process compare, and order positiv rational numbers and understand relationships as student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to.		(2) Number and operations. he student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
(G) compare sets of objects up to at least 20 in each set using comparative language	(E) use place value to compare whole numbers up to 120 using comparative language	(D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =).	(D) compare and order whole numbers up to 100,000 andrepresent comparisons using the symbols $>,<$, or $=$.	(C) compare and order whole numbers to 1,000,000,000 and represent comparisons using the symbols $>,<$, or $=$	(B) compare and order two decimals to thousandths and the symbols $>,<$, or $=$.	(D) order a set of rational numbers arising from mathematical and real-world contexts.		(D) order a set of real numbers arising from mathematical and real-world contexts.	
(H) use comparative language to describe two numbers up to 20 presented as written numerals									
	(F) order whole numbers up to 120 using place value and open number lines.								
	(G) represent the comparison of two numbers to 100 using the symbols $>,<$, or $=$.								
				(F) compare and order decimals using concrete and visual models to the hundredths					

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
		(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to expected to:		senting and Relating N (2) Number and ope The student applies mathematical process \qquad numbers and decimals and related to place value. The student is expected to	Using N	Lines (2) Number and operations The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:		(2) Number and operations The student applies mathematical process standards to represent and of forms. The student is expected to:	
	(F) order whole numbers up to 120 using place value and open number lines.	(E) locate the position of a given whole number on an open number line	C) represent a number on a number line as being betwee two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relativesize of numbers in order to round whole numbers.						
				(H) determine the corresponding decimal to the tenths on hundradedts pace of speefified point on a number					
			3) Number and operations The student applies mathematical process standards to represent and explain fractional units. The student is expected to						
			(A) represent fractions greater than zero and less denominators of $2,3,4,6$, and 8 using concrete objects and pictorial models, including trip diagrams and numbe lines.	(G) represent fractions and decimals to the tenths or hundredths as distances from zero on a number line		B) identify a number, its opposite, and its absolut value.			
		(F) name the whole number that corresponds to a specific point on a number line.	(B) determine the corresponding fraction reater than zero and less than or equal to one with denominators of $2,3,4,6$ and 8 given a specified point on a number line.			C) locate, compare, and order integers and rational numbers using a number line		(B) approximate the value of an irrational number including π and square roots of numbers less than 225 and locate that rational number approximation on number line.	
							nting and Classifying N The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to: is expected to.	umbers (2) Number and operations The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
						A) classify whole numbers integers, and rational numbers using a visual representation such as a relationships between sets of numbers. \qquad	A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers.	(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of real numbers.	

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
(2) Number and oper The student applies mathematical process standards to understand how to represent and compare position and magnitude of whole numbers, and relationships within the student is expected to:		(2) Number and operations. The student applies standards to understand how to represent and compare whole numbers, the relativ position and magnitude of whole numbers, and relationships within the numeration system related to expected to:	Composing and (2) Number and oper The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:	d Decomposing Numbe ${ }^{\text {(2) Number and operations. }}$ mathematical process standards to represent, numbers and decimals and understand relationships student is expected to	rs: Place Value (2) Number and operations. mathematical process standards to represent, compare, and order positive understand relation related to place value. The student is expected to			(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:	
(I) compose and decompose numbers up to 10 with objects and pictures.	(B) use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones.	(A) use concrete and pictorial models to compose and decompose numbers up to 1,200 in more han one way as a sum of so many thousands, hundreds, tens, and ones.	(A) compose and decomposenumbers u to 1000000 as a sum of so many ten thousanas, so manythousands, so many hundreds so many tens, and so many ones suing objects, pictmodels, and numbers, including expanded notation as appropriate.					(C) convert between standard decimal notation and scientific notation.	
	(C) use objects, pictures, and expanded and standard forms represent numbers up to 120.	B) use standard, word, and expanded forms to represent numbers up to 1,200 .		B) represent the value of the digit in whole numbers through 1,000,000,000 and decimals to the hundredths using expanded notation and numerals. \qquad	(A) represent the value of the digit in decimals through the thousandths using expand notation and numerals.				
			(B) describe the mathematical relationship found inthe baseselo place e alduesystem throghte hunted thousands place.	(A) interpret the value of 10 times the position to the right and as one-tenth of the value of the place to its left.					
				(E) represent decimals, ncluaing tenths and hundredths, using concrete and visual models and money.					

(3) Number and operations The student applies mathematical process standards to represent and student is expected to:	(3) Number and operations. The student applies mathematical proces standards to represent and problems. The student expected to:	(5) Proportionality. The student applies mathematical process standards to solve problem involving proportional expected to
(F) represent equivalen fractions with denominator of $2,3,4,6$, and 8 using a variety of objects and pictoria models, including number lines		
(G) explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model.	(C) determine if two given fractions are equivalent using a variety of methods.	
(H) compare two fractions having the same numerator or denominator in problem by reasoning about thei sizes and justifying the conclusion using symbols, words, objects, and pictorial	(D) compare two fractions different denominators and represent the comparison using the symbols $>=$, or	
	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships student is expected to:	
	(G) relate decimals to fractions that name tenth and hundredths.	(C) use equivalent fractions decimals, and percents to show equal parts of the

(

			Apply	ing Strategies for Estim	ation				
			(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:				
				(D) round whole numbers to a given place value through the hundred thousands place.					
			(B) round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems.	(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to:	(C) round decimals to tenths or hundredths.				
				(G) round to the nearest 10, 100, or 1,000 or use compatible numbers to estimate solutions involving whole numbers.					
Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra 1
Rep	senting and Determin	g Values of Coins an	Bills						
(4) Number and operations. The student applies mathematical process standards to identify coins in order to recognize the need for monetary transactions. The student is expected to:	(4) Number and operations. The student applies mathematical process standards to identify coins, their values, and the relationships among them in order to recognize the need for monetary transactions. The student is expected to:	(5) Number and operations. The student applies mathematical process standards to determine the value of coins in order to solve monetary transactions. The student is expected to:	(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. The student is expected to:						
(A) identify U.S. coins by name, including pennies, nickels, dimes, and quarters.	(A) identify U.S. coins, including pennies, nickels, dimes, and quarters, by value and describe the relationships among them.								
	(B) write a number with the cent symbol to describe the value of a coin.	(B) use the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins.							
	(C) use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes.	(A) determine the value of a collection of coins up to one dollar.	(C) determine the value of a collection of coins and bills.						

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebral
(6) Number and operations. The student applies mathematical process standards to connect subtraction to multiplication and division situations that involve equal groupings and shares. The student is expected to:									
			(4) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for in order to solve problems with efficiency and accuracy The student is expected to:			(3) Number and operations. The student applies mathematical process standards to represent addition, subtraction, while solving probl division justifying solutions. The student is expected to:	3) Number and operations The student applies mathematical process standards to add, subtract, multiply, and divide while justifying solutions. The student is expected to:		
		B) model, create, and describe contextual division situations in which a set of concrete objects is separated into equivalent sets.	(H) determine the numbe of objects in each group when a set of objects is partitioned into equal shares equally.						
			(I) determine if a number is even or odd using divisibility ules						
			(J) determine a quotient using the relationship between multiplication and division			(A) recognize that dividing by a rational number and multiplying by its reciproca esult in equivalent values.			
			(K) solve one-step and twostep problems involving multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models, and equal operations; or recall of facts.	E) represent the quotient of up to a four-digit whole number divided by a one digit whole number using arrays, area models, or equations.	(C) solve with proficiency for quotients of up to a fourdigitit dividend by a two-digit divisor using strategies and		(A) add, subtract, multiply, and divide rational numbers fluently.		
				(F) use strategies and standard algorithm to up to a four-digit dividend by a onedigititiviso a one-digit divisor					
						(E) multiply and divide positive rational number fluently.			
					(F) represent quotients of decimals to the hundredth up to four-digit dividends and two-digit whole number divisors, using objects and pictorial models, including area models.		(B) apply and extend previous understandings of operations to solve problems		
					(G) solve for quotients of decimals to the hundredth and two-digit whole numb divisors, using strategies and algorithms, including the standard algorithm.		using addition, subtraction, multiplication, and division of rational numbers		

mathematical process standards to develop and use
strategies and methods for strategies and methods for
whole number computations whole number computations
in order to solve problems with efficiency and accuracy. The student is expected to:
(4) Number and ope
The student applies
mathematical proce mathematical proces standards to develop and use
strategies and methods for strategies and methods for
whole number computations whole number comput
and decimal sums and differences in order to solve problems with efficiency and
accuracy The problems with efficiency
accuracy. The student is
expected to:

(5) Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	(7) Algebraic reasoning. The student applies mathematica process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:
(D) represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences.	(C) represent and solve addition and subtraction word problems where
(E) understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s).	unknowns may be any one of the terms in the problem.

Representing Problem Situations with the Equal Sign

| cal | $\begin{array}{l}\text { (5) Algebraic reasoning. The } \\ \text { student applies mathematical }\end{array}$ |
| :--- | :--- | :--- |
| fy | |

process standards to analyze
and create patterns and
relationships. The student is
expected to: expected to:
(A) represent one- and
step problems involvin step problems involving
addition and subbraction of whole numbers to 1,000 using pictorial models,
number lines, and equations.

(B) represent and solve one
and two-step multivication
and two-step multiplication and division problems with 100 using arrays, strip

$\begin{array}{l}\text { (5) Algebraic reasoning. The } \\ \text { student applies mathematical }\end{array}$	$\begin{array}{l}\text { (4) Algebraic reasoning. The } \\ \text { student applies mathematical }\end{array}$	(7) Expressions, equations,				
and relations,				$\begin{array}{l}\text { student applies mathematical } \\ \text { process standards to develop }\end{array}$	$\begin{array}{l}\text { student applies mathematical } \\ \text { process standards to develop }\end{array}$	$\begin{array}{l}\text { and relationships. The student } \\ \text { applies mathematical }\end{array}$ proces
:---	:---	:---		$\begin{array}{l}\text { process standards to develop } \\ \text { concepts of expressions and } \\ \text { equations. The student is }\end{array}$	$\begin{array}{l}\text { process standards to develop } \\ \text { concepts of expressions and } \\ \text { equations. The student is }\end{array}$	$\begin{array}{l}\text { applies mathematical process } \\ \text { standards to develop concepts } \\ \text { of expressions and equations. }\end{array}$
:---	:---	:---				
The				equations. The student is	$\begin{array}{l}\text { equations. } \\ \text { expected to: } \\ \end{array}$	
:---	:---					

\square
(A) represent multi-step problems involving the
operations with whole numbers using strip diagrams and equations with
a letter standing for the unknown quantity.
(B) represent and solve multi-step problems
$\begin{array}{ll}\text { involving the four operations } & \text { (B) distinguish between }\end{array}$ with whole numbers using expressions and equations equations with a letter quantity.
diagrams, and equation
dit

Representing Problem Situations with Equations and Inequalities		
(9) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represen expected to:	(10) Expressions, equations, and relationships. The student standards to use one- variable equations and inequalities to represent situations. The student is expected to	(8) Expressions, equations, and relationships. The studen standards to use one- variable equations or inequalities in problem situations. The tudent is expected to
(A) write one-variable, one step equations and inequalities to represesent constraints or conditions within problems.	(A) write one-variable, two step equations and inequalities to represent constraints or constrints or conditions within problems.	(A) write one-variable equations or inequalities with ariables on both sides that represent problems using rational number coefficients and constants.
(B) represent solutions for one-variable, one-step equations and inequalitie on number lines.	(B) represent solutions for one-variable, two-step equations and inequalities on number lines.	
(C) write corresponding realworld problems given onevariable, one-step equations or inequalities	(C) write a corresponding realworld problem given a onevariable, two-step equation or inequality.	(B) write a corresponding real-world problem when given a one-variable equation or inequality with equal sign using rational number coefficients and constants.

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
	(5) Algebraic reasoning. The student applies mathematical and apply number patterns within properties of numbers and operations in order to student is expected to:	(7) Algebraic reasoning. The process standards to identify and apply number patterns within properties of numbers describe relationships. The student is expected to:	(5) Algebraic reasoning The student applies standards to analyze and create patterns and relationships. The student is expected to:	Representing and S (5) Algebraic reasoning. The process standards to develop concepts of expressions and equations. The student is expected to	Olving Problems with E (4) Algebraic reasoning. The process standards to develop concepts of expressions and equations. The student is expected to	uations and Inequalities (10) Expressions, equations applies mathematical process standards to use equations and inequalities to solve expected to	11) Expressions, equations and relationships. The student applies mathematical proces standards to solve one variable equations and inequalities. The student is expected to:	(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one- variab equations or inequalities in problem situations. The student is expected to	(5) Linear functions, equations, and inequalities. The student applies the mathematical process standards to solve, with and without technology, linear equations and evaluate the reasonableness of their solutions The student is expected to:
	(F) determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation.	(C) represent and solve word problems where unknowns may be any one of the terms in the problem.	(A) represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using lines, and equations.			(A) model and solve oneand inequalities that represent problems, including geometric concepts.	(A) model and solve onevariable, two-step equations and inequalities.	(C) model and solve onevariable equations with variables on both sides of the equal sign that represent problems using rational number coefficients and constants	(A) solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides. (B) solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides.
	(G) apply properties of operations to add and numbers.		(D) determine the known whole number in multiplication or division equation relating three unknown is either a missing factor or product.	(A) represent multi-step problems involving the four operations with whole numbers using strip diagrams and equations with a letter standing for th unknown quantity.	(B) represent and solve multistep problems involving the numbers using equations with a letter standing for the unknown quantity.	(B) determine if the given value(s) make(s) one variable, one-step equation or inequalities true	(B) determine if the given value(s) make(s) one-variable, wo-step equations and nequalities true	(9) Expressions, equations, and relationships. The student applies standards to use multiple representations to develop simultaneous linear equations. The student is expected to:	(3) Linear functions, equations, and inequalities. The student applies the mathematical process standards when using graphs of linear functions, key features, and related transformations to represent in multiple ways and solve, with and without technology, equations, inequalities, and systems of equations. The student is expected to:
			(B) represent and solve one- and two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations.					(A) identify and verify the values of x and y that simultaneously satisfy two inear equations in the form $y=m x+b$ from the intersections of the graphed equations.	(F) graph systems of two linear equations in two variables on the coordinate plane and determine the solutions if they exist. (G) estimate graphically the solutions to systems of two linear equations with two variables in real-world problems.

(5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to:	(4) Linear functions, equations, and inequalities. The student applies the mathematical process standards to formulate statistical relationships and evaluate their reasonableness based on real-world data. The student is expected to:
(C) contrast bivariate sets of data that suggest a linear relationship with bivariate sets of data that do not suggest a linear relationship from a graphical representation.	(A) calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.
(D) use a trend line that approximates the linear relationship between bivariate sets of data to make predictions.	
(G) identify functions using sets of ordered pairs, tables, mappings, and graphs.	
(H) identify examples of proportional and nonproportional functions that arise from mathematical and realworld problems.	
Developing Foundations of Slope	Representing Slope
(4) Proportionality. The student applies mathematical process standards to explain proportional and nonproportional relationships involving slope. The student is expected to:	(3) Linear functions, equations, and inequalities. The student applies the mathematical process standards when using graphs of linear functions, key features, and related transformations to represent in multiple ways and solve, with and without technology, equations, inequalities, and systems of equations. The student is expected to:
(A) use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y-values to the change in x-values, $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$, is the same for any two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on the same line.	(A) determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various forms, including $y=m x+b$, $A x+B y=C$, and $y-y_{1}=m\left(x-x_{1}\right)$.

(B) graph proportional relationships, interpreting the
unit rate as the slope of the line that models the relationship. (B) calculate the rate of Change of a inear functi,
represented tabularly, graphically, or ebraic in context of mathematical and real-world problem
C) use data from a table or
graph to determine the rate of
change or slope and y intercept
in mathematical and real-world Chop inear functions o identify key features, including x-intercept, y intercept, zeros, and slop in mathematical and realin mathematical

	Connecting Algebra and Geometry					
	(5) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and expected to:	(4) Algebraic reasoning. The student applies mathematica process standards to develop concepts of expressions and expected to:	(8) Expressions, equations and relationships. The student standards to use geometry to represent relationships and solve problems. The student is expected to:	(8) Expressions, equations, and relationships. The studen applies mathematical standards to develop geometric relationships with volume. The student is expected to:	(6) Expressions, equations, and relationships. The student standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to:	
	(C) use models to determine the formulas for the perimeter of a rectangle $(1+w+1+w$ or $2 l+2 w)$, including the special form for and the area of a rectangle $(1 \times w)$.	(G) use concrete objects and pictorial models to develop the formulas for the volum of a rectangular prism, including the special form for $\mathrm{x} s$, and $V=B h$).		(A) model the relationship between the volume of rectangular prism and rectangular pyramid having both congruent bases and heights and connect that relationship to the formulas.	(A) describe the volume formula $\mathrm{V}=\mathrm{Bh}$ of a cylinder in terms of its base area and its height	
				(B) explain verbally and symbolically the relationship between the volume of a triangular prism and a triangular pyramid having both congruent bases and heights and connect that relationship to the formulas.	(B) model the relationship between the volume of a cylinder and a cone having both congruent bases and relationship to the formulas	
				(C) use models to determin the approximate formulas for the circumference and area of a circle and connec formulas.	(C) use models and diagrams to explain the Pythagorean theorem.	
	(D) solve problems related to perimeter and area of rectangles where dimensions are whole numbers.	(H) represent and solve problems related to perimeter and/or area and related to volume	(C) write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, right rectangular prisms where dimensions are positive rational numbers.			
				(9) Expressions, equations, and relationships. The student applies mathematical process standards to solve geometric expected to:	(7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:	
			(D) determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and	(A) sovve problems involving prisms, triangular prisms rectangular pyramids, and triangular pyramids.	(A) solve problems involving the volume of cylinders, cones, and spheres.	
			volume of right rectangu positive rational numbers.	(B) determine the circumference and area of circles.		

(4) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:
(B) apply qualitative and quantitative reasoning to solve prediction and comparison of real-world problems involving ratios and rates.	
(C) give examples of ratios as multiplicative comparisons of two quantities describing the same attribute.	
(D) give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients.	(A) represent constant rates of change in mathematical and real-world problems given pictorial, tabular, verbal, numeric, graphical, and algebraic representations, including $d=r t$.
	(B) calculate unit rates from rates in mathematical and real-world problems.
(E) represent ratios and percents with concrete models, fractions, and decimals.	
(F) represent benchmark fractions and percents such as $1 \%, 10 \%, 25 \%, 331 / 3 \%$, and multiples of these values using 10 by 10 grids, strip diagrams, number lines, and numbers.	(D) solve problems involving ratios, rates, and percents, including multi-step problems involving percent increase and percent decrease, and financial literacy problems.
(G) generate equivalent forms of fractions, decimals, and percents using realworld problems, including problems that involve money.	
(H) convert units within a measurement system, including the use of proportions and unit rates.	(E) convert between measurement systems, including the use of proportions and the use of unit rates.

$$
\begin{aligned}
& \text { A) represent constal } \\
& \text { rates of change in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rates of change in } \\
& \text { mathematical and real-world }
\end{aligned}
$$

$$
\begin{aligned}
& \text { problems given pictorial, } \\
& \text { tabular, verbal, numeric, }
\end{aligned}
$$

graphical, and algebraic

$$
\begin{aligned}
& \text { erpapncentataions, includicing } \\
& d=t \\
& d \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { reppresentations, incluaing } \\
& d=r t .
\end{aligned}
$$

the use of concrete and
pictorial models.
pictorial models.
(C) use equivalent fractions,
decimals, and percents to
show equal parts of the
(D) solve problems involving atios, rates, and percents, including multi-step
problems involving percent
increase and vercent increase and percent
decrease, and financial literacy problems.

Connecting
Proportionality and Geometry
(5) Proportionality. Th
student applies
mathematical prom
mathematical process
standards to use eeometry
to describe or solve to describe or solve
problems involving problems involving
proportional relationships. The student is expected to: (A) generalize the critical attributes of similarity, including ratios within and (B) describe π as the ratio of the circumference of a circle to is diameter.
C) solve mathematical and
real-world problems involving similar shape and

$$
\begin{aligned}
& \text { with and without } \\
& \text { technology. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { technology. } \\
& \hline
\end{aligned} \text { (C) make predictions and }
$$

$$
\begin{aligned}
& \text { determine solutions using } \\
& \text { opnorimentan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { exerermine solutions susing } \\
& \text { expriment data for simpl }
\end{aligned}
$$

$$
\begin{aligned}
& \text { experimental alat for siif } \\
& \text { and compound events. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D) make predictions and } \\
& \text { determine solutions using }
\end{aligned}
$$

$$
\begin{aligned}
& \text { teterme solutions using } \\
& \text { heoretical probability for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { theoretical probability fa fo } \\
& \text { fimple and compound } \\
& \text { ovontc }
\end{aligned}
$$

$$
\begin{aligned}
& \text { events. } \\
& \text { (E) find the probabilities of a } \\
& \text { simple event and its }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simple event and its } \\
& \text { complement and des }
\end{aligned}
$$

$$
\begin{aligned}
& \text { complement and describe } \\
& \text { the relationship between the } \\
& \text { two. }
\end{aligned}
$$

$$
\frac{\text { two. }}{\text { (F) use data from a random }}
$$ sample to make inferences about a population.

(G) solve problems using data epresented in bar graph plots, and circle graphs,
ncluding part-to- whole and part-to-part comparisons and
patel equivalents.
(H) solve problems using qualitative and quantitative predictions and comparison fom simple experiments. (1) determine experimental and theoretical probad
related to simple and compound events using dat and sample spaces.

(E)

(7) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to:	(9) Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to:	(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. The student is expected to:	(8) Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to:
(E) tell time to the hour and half hour using analog and digital clocks.	(G) read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m.	(C) determine the solutions to problems involving addition and subtraction of time intervals in minutes using pictorial models or tools such as a 15 -minute event plus a 30-minute event equals 45 minutes.	(C) solve problems that deal with measurements of length, intervals of time, liquid volumes, mass, and money using addition, subtraction, multiplication, or division as appropriate.

expected to:
(A) illustrate the measure of
an angle as the part of a
An angle as the part of a
circle whose center is at the
vertex of the angle that is
vertex of the angle that is
"cut out" by the rays of the
"cut out by the rays of the
angle. Angle measures are
limited to whole numbers.
(B) illustrate degrees as the
units used to measure an
angle, where $1 / 360$ of any
circle is one degree and an
angle that "cuts" $n / 360$ out
of any circle whose center is
at the angle's vertex has a
measure of n degrees. Angle
measures are limited to
C) determine th
approximate measures
angles in degrees to the
nearest whole number using
a protractor.
(D) draw an angle with a
given measure.
(E) determine the measur
of an unknown angle form
by two non-overlapping
by wo non-overlapping
adjacent angles given one

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4 Representing Data	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
(8) Data analysis. The student applies mathematica process standards to collect useful for interpreting information. The student is expected to	(8) Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting problems. The student is expected to:	(10) Data analysis. The student applies mathematical data to make it useful interpreting information a solving problems. The student is expected to	(8) Data analysis. The student applies mathematical proces by collecting, organizing, displaying, and interpreting data. The student is expected to	(9) Data analysis. The student applies mathematical process standards to solve proble by collecting, organizing, displaying, and interpreting data. The student is expected to	9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to	(12) Measurement and data. The student applies mathematical process standards to use numerical to analyze problems. The student is expected to:		(11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data The student is expected to:	
(A) collect, sort, and organize data into two or three categories.									
		(A) explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for given category.							
(B) use data to create realobject and picture graphs.	(B) use data to create picture and bar-type graphs.	(B) organize a collection of data with up to four categ bries using pictographs and bar graphs of one or more.	(A) summarize a data set using a frequency table, do plot, pictograph, or bar graph with graph with scaled intervals.	(A) represent data on a frequency table, dot plot, or with whole numbers and fractions.	(A) represent categorical data with bar graphs or numerical data, including data sets of measurements in fractions or decimals, with dot plots or stem-and-leaf plots.	(A) represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and box plots.			
					(B) represent discrete paired data on a scatterplot.			(A) construct a scatterplot and describe the observed association such as linear, non-linear, and no association between bivariate data.	

Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Algebra I
	Considering Planning and Money Management								
	(9) Personal financial literacy The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(11) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(9) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively The student is expected to:	(10) Personal financia literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security The student is expected to:	(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:		(13) Personal financial literacy. The student applies mathematical process standards to develop an and problem solving use and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:		
	(D) consider charitale giving.		(F) identify decisions involving income, spending, saving, credit, and charitable giving. giving.					(F) analyze situations to determine if they represent financially responsible decisions and identify the benefits of financial esponsibility and thecosts of financial irresponsibility.	
		(C) distinguish between a deposit and a withdrawal.		(D) describe how to allocate weekly allowance among spending; saving, including for college; and sharing.	(D) develop a system for keeping and using financial records.	\qquad			
						(C) balance a check reister thantincludes depositis, withdrawals and transers. withdrawals, and transfers.			
					(E) describe actions tha might be taken to balance budget when expenses exceed income.				
					(F) balance a simple budget.		(B) identify the components of income. planned savings for college, retirement, and emergencies. taxes. fixed and variable expenses, and calculate what percentage the total budget.		
							(C) create and organize a financial assets and liabilities record and construct a net worth statement.		
							(D) use a family budget minimum household budget and average hourly wage needed for a family to meet its basic needs in the tudent's city or another large city nearby.		

