2(3) Number and operations. The student applies mathematical process standards to recognize and represent fractional units and communicates how they are used to name parts of a whole.

2(3)(B) The student is expected to explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part.

Materials

None needed

Procedure:

Prompt the student to compare the sets of fraction models below.

1. Compare Fraction A and Fraction B. Which fraction needs the fewest number of fractional parts to equal the whole? Why?

Fraction A

Fraction B

2. Compare the fractional part of Fraction C and Fraction D. Which fraction needs the greatest number of fractional parts to equal the whole? Why?

Fraction C

Fraction D

Check Student's Responses:

TEKS for Mathematics "Rapid" Assessment: Grade 2

1.	Identified the fraction with the least number of parts: □ Correct □ Incorrect	Notes:
	Explanation: □ Correct □ Incorrect	
2.	Identified the fraction with the great number of parts: □ Correct □ Incorrect	
	Explanation: □ Correct □ Incorrect	

2(3)(B) The student is expected to explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part.

Possible interpretations, issues to follow up on, and implications for teaching

What did you observe?

- The student **correctly identified the fraction model with the greatest and least number of parts.** You may want to ask the student to name the fractional parts of the model.
- The student incorrectly identified the fraction model with the greatest and least number of parts and/or provided an incorrect explanation(s). It may be necessary to support the student through a teaching activity. Once the teaching activity is complete, prompt the student to repeat the activity using two new fraction models.

A teaching strategy might include asking the student to count and number the fractional parts on each model. Ask the student the following questions:

- Which fraction has the greatest number of parts?
- What do you notice about the size of the parts from this fraction model as compared to the other fraction model?
- Which fraction has the smallest number of parts?
- What do you notice about the size of the parts from this fraction model as compared to the other fraction model?