Momentum Internet Lab - Momentum and Collisions Name:

Date: Period:

Website: http://phet.colorado.edu/

Play with the Sims  $\rightarrow$  Physics  $\rightarrow$  Motion  $\rightarrow$  Collision Lab

Run Now!

## Introduction:

When objects move, they have *momentum*. Momentum, p, is the product of an object's mass (kg) and its velocity (m/s). The unit for momentum, p, is kg·m/s. During a collision objects transfer momentum to each other, resulting in different motions than before the collision. In this activity you will study the motion colliding objects.

$$momentum = m \times v$$



| Ball | Mass<br>kg | Position<br>m | Velocity<br>m/s | Momentum<br>kg m/s<br>0.50<br>0.00 |  |
|------|------------|---------------|-----------------|------------------------------------|--|
| 1    | 0.50       | 1.00          | 1.00            |                                    |  |
| 2    | 1.50       | 2.00          | 0.00            |                                    |  |

## **ELASTIC Collisions**

$$m_1 v_{1before} + m_2 v_{2before} = m_1 v_{1after} + m_2 v_{2after}$$



- What defines a collision as being elastic?
- 2. Simulate the four elastic collisions below. Complete the table using math formulas and the simulation.

|   |        |                | BEFORE COLLISION      |                | <b>p</b> <sub>total</sub> | AFTER COLLISION       |                |
|---|--------|----------------|-----------------------|----------------|---------------------------|-----------------------|----------------|
| # | m₁     | m <sub>2</sub> | <b>V</b> <sub>1</sub> | V <sub>2</sub> | Ptotal                    | <b>V</b> <sub>1</sub> | V <sub>2</sub> |
| 1 | 2.0 kg | 2.0 kg         | 1.5 m/s               |                | 0 kg⋅m/s                  |                       |                |
| 2 | 2.5 kg | 5.0 kg         |                       | -1.0 m/s       | 0 kg·m/s                  |                       |                |
| 3 | 3.0 kg | 6.0 kg         | 2.0 m/s               | 0.0 m/s        |                           |                       |                |
| 4 | 6.0 kg |                | 2.0 m/s               | -1.0 m/s       | 8.0 kg·m/s                |                       |                |

- 3. Two objects with the same mass move toward each other with the same speed and experience an elastic collision. Compare the final velocities of each object to their initial velocities.
- 4. A less-massive moving object has an elastic collision with a more-massive object that is not moving. Compare the initial velocity (speed and direction) of the less-massive object to its final velocity.

## **INELASTIC Collisions**





- 5. What defines a collision as being inelastic?
- 6. Simulate the four inelastic collisions below. Complete the table using math formulas and the simulation.

|   |         |        | BEFORE COLLISION      |                | p <sub>total</sub> | AFTER COLLISION                   |
|---|---------|--------|-----------------------|----------------|--------------------|-----------------------------------|
| # | m₁      | $m_2$  | <b>V</b> <sub>1</sub> | V <sub>2</sub> | Ptotal             | V <sub>1</sub> and V <sub>2</sub> |
| 1 | 2.0 kg  | 2.0 kg | 1.5 m/s               | 0              |                    |                                   |
| 2 | 3.0 kg  | 6.0 kg | 1.5 m/s               | -0.75 m/s      |                    |                                   |
| 3 | 1.5 kg  | 5.0 kg | 2.0 m/s               | 0.2 m/s        |                    |                                   |
| 4 | 10.0 kg |        | 2.0 m/s               | -1.0 m/s       | 10.0 kg·m/s        |                                   |

- 7. Two objects moving toward each other with **different** momentums experience an inelastic collision. In which direction will both objects travel after the collision?
- 8. A less-massive object is moving in the same direction as a more-massive object, but with a higher speed. They experience an inelastic collision. Describe the **speed** of the **more-massive** object after the collision.
- Object 1 has half the mass of object 2 and the objects move toward each other and experience an inelastic collision. If both objects do **not** move after the collision compare the velocity of **both** objects **before** the collision.
- 10. Show mathematically the total momentum before the collision in trial #1 is conserved after the collision.